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Recent work has focused attention on possible shifts in the bond angle distribution of CO2 as a consequence
of intermolecular interactions in the supercritical phase. To investigate the temperature and phase dependence
of the intramolecular structure of CO2, we performed Feynman path integral Monte Carlo calculations based
on a spectroscopically derived analytical potential, first principles molecular dynamics simulations using
Kohn-Sham density functional theory, and Monte Carlo simulations employing empirical interaction potentials.
On the basis of various distributions used to characterize the intramolecular structure, we conclude that the
aggregation state has a negligible influence on the intramolecular structure, in particular we find that in the
classical limit the distributions are remarkably similar for the ideal gas, supercritical, and solid phases when
considered at the same temperature. In contrast, an increase in the temperature from 325 to 673 K or inclusion
of nuclear quantum effects leads to a significant broadening of the distributions. With respect to the first
C-O bond vector, the second bond vector most prefers a collinear arrangement. However, due to the Jacobian
factor the maximum in the bond angle distribution at 325 K is shifted to an angle of about 175.7° in the
classical limit or to 173.0° if nuclear quantum effects are included. Nevertheless, an analysis of the temperature
dependence of the constant-volume heat capacity demonstrates that carbon dioxide should be viewed as a
linear molecule.

1. Introduction

Supercritical fluids are attractive solvents for a variety of
applications because they combine to some extent the positive
attributes of gaseous and liquid phases, and their properties can
be tuned easily by changing the temperature or pressure or by
addition of cosolvents.1-9 Many common applications exploit
this property, including supercritical fluid extraction and chro-
matography. Carbon dioxide (CO2) is a particularly useful
supercritical solvent as it is nontoxic and nonflammable and
has a readily accessible critical point (Tcrit ) 304.3 K, pcrit )
73.8 bar).

Given the technological interest in supercritical CO2 (scCO2)
as a green solvent, it is not surprising that its thermodynamic,
structural, and transport properties have been the subject of many
experimental and computational investigations. Motivated by
some recent computational studies,10-13 we focus in this work
on the intramolecular structure of CO2. From an analysis of the
trajectory of a Car-Parrinello molecular dynamics simulation
of scCO2, Saharay and Balasubramanian found a maximum at
174.2° for the distribution of the bond angle and argued that
“the nonlinearity in the O-C-O angle in scCO2 is a conse-
quence of the formation of a first neighbor shell”.11 The
distribution shown in their paper corresponds to a distribution
of the instantaneous average of all the bond angles computed
for a 32-molecule system.11 In a subsequent paper by the same
authors, the cosine distributions of individual O-C-O angles
obtained from Car-Parrinello molecular dynamics simulations
of scCO2 at different densities are compared to those obtained
from molecular dynamics simulations for a semirigid empirical
model,13 and it is surmised that the differences are “due to

polarization effects induced by a changing near-neighbor
environment”.12

Inspired by this apparent nonlinearity of scCO2, Zhang et al.13

proposed modifications of the empirical rigid linear CO2 model
of Harris and Yung,14 to introduce rigid and semirigid models
with an equilibrium bond bending angle of 174.2° (which,
together with the use of partial charges, leads to the introduction
of a spurious permanent dipole). Recently, the resulting rigid
bent EPM-M model was used to analyze the data of neutron
diffraction experiments for supercritical mixtures of CO2 and
water.15,16 However, this view of the intramolecular structure
of scCO2 is in conflict with neutron diffraction experiments17,18

for CO2 in the gaseous, liquid, and supercritical states that
generally show 2rCO = rOO′ and that led Ishii et al. to conclude
“that the intramolecular C-O and O-O distances are indepen-
dent of the conditions and that the carbon dioxide molecule is
linear-shaped”.18 We note that values of 0.9990 and 0.9995 for
the ratio of rOO′/2rCO correspond to bend angles of 174.9° and
176.4°, respectively. Thus, diffraction experiments would need
to determine the intranuclear distances with a precision of at
least 4 significant figures to support the argument that the bend
angle is larger than 175°. Indeed, some fits to experimental
diffraction data18,19 yield rOO′ > 2rCO, i.e., an impossible set of
internuclear distances. Somewhat in contrast to the more recent
neutron diffraction studies, an earlier study found internuclear
distances that support a bend angle of 163° for liquid CO2.20

In this work, we use several computational techniques,
including path integral Monte Carlo calculations, first principles
molecular dynamics simulations, and Monte Carlo simulations
for empirical models, to investigate the intramolecular structure
of CO2 for various aggregation states and temperatures.
Furthermore, we compute the constant-volume heat capacity
because the change from a linear geometry to a nonlinear
geometry results in replacing one vibrational degree of freedom
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with one rotational degree of freedom (in the rigid-rotor/
harmonic-oscillator approximation21), which leads to significant
changes in the heat capacity.

2. Computational Methods

A. Path Integral Monte Carlo Calculations. Feynman path
integral Monte Carlo (PIMC) calculations22,23 were performed
to obtain properties for an isolated CO2 molecule using one of
the potentials of Chedin;24 specifically using the parameters
given in the second column of Table 2 of his paper, together
with a value for the equilibrium C-O separation of 1.160 Å
(for which no recommended value was supplied). This potential
predicts low energies for some physically unimportant regions
where the energy should be very large and this can be
problematic for Monte Carlo sampling methods. To prevent such
complications we replaced the evaluated energy with a large
value for any configuration having rCO > 2.70 a0.

The partition functions, coordinate probability distributions,
and averages were calculated using a discretized Feynman path
integral method employing a P-point trapezoidal Trotter ap-
proximation of the paths. Most of the numerical details of our
implementation have been presented previously and need not
be reiterated here.25-28

Additionally, we calculate rotational-vibrational heat capaci-
ties, Crovib(T), directly from the internal partition function via
the expression
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where the derivatives are evaluated by 3-point finite difference
formulas, � ) 1/kBT with T the absolute temperature and kB

the Boltzmann constant, R is the molar gas constant, and Q is

the partition function. Heat capacities obtained using eq 1 are
not especially sensitive to the choice of step size whereas we
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which involve the partition function rather than the logarithm
of the partition function display a strong sensitivity to the step
size and sometimes need to be evaluated using higher order
finite difference approximations. A crucial feature of evaluating
heat capacities via finite differences29,30 is that the samples used
for calculating the partition functions need to be strongly
correlated; otherwise, statistical uncertainties would lead to finite
difference errors in the temperature derivatives. In the method
we employ here, every path included in a calculation at a
temperature T is also present in a calculation at T′ except that
they are scaled by a factor of (�′/�)1/2; this approach is equivalent
to a recommendation by Yamamoto.30 When calculated in this
manner, the error from the finite difference approximation has
only an extremely weak dependence on the sampling, so
estimates for appropriate step sizes may be made using
calculations with a small number of samples; for our final
calculations we selected step sizes of 0.5, 0.5, 1.0, or 8.0 K
near T ) 325, 673, 1100, and 2000 K, respectively.

The heat capacity displays slow convergence with respect to
the path discretization size, P, and the partition function
converges only slightly more rapidly with P. For T ) 325 K, a
value of P ) 256 was chosen, and P ) 128 was chosen at
higher temperatures. At the lowest temperature, data were also
simultaneously collected for P ) 64 and 128, using the enhanced
same path (ESP) scheme;28 these additional data are obtained
for virtually no additional expense as a byproduct of the P )
256 calculation. An extrapolation correction26-28 was applied
to obtain the converged quantum mechanical (QM) partition
functions using the result of a fit to

Q[P](T))Q[P)∞](T)+ A(T)

P2
+ B(T)
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Although the magnitudes of the extrapolation corrections are
only about 0.05% for the calculations presented here, attempts
to obtain heat capacity values directly from finite difference
calculations on extrapolated partition functions still led to very
large errors so heat capacities were extrapolated by applying
an analogue of eq 3 directly to Crovib.

The distributions of various coordinates and their average
values converge much more rapidly with respect to P than the
partition functions and heat capacities so these data need no
extrapolation corrections.

TABLE 1: Mean Internuclear Distances, Internuclear Distance Ratios, Bend Angles, and Cosines of the Bend Angle for CO2
a

temp [K] method 〈rCO〉 [Å] 〈rOO〉 [Å] 〈rOO′/rCO + rCO′〉 〈 θ〉 [deg] 〈cos θ〉

325 PIMC (P ) 256) 1.16535 2.32540 0.997623 173.036 -0.990694

PIMC (P ) 1) 1.16217 2.32023 0.998614 174.628 -0.994357

FPMD (solid) 1.17018 2.33623 0.998416 174.330 -0.993765

FPMD (scf-lowb) 1.18018 2.35624 0.998515 174.529 -0.994159

FPMD (scf-highc) 1.17618 2.34823 0.998515 174.329 -0.993860

semirigid 2.3173 0.998614 174.628 -0.994357

673 PIMC (P ) 128) 1.16636 2.32443 0.996534 171.544 -0.9862136

PIMC (P ) 1) 1.16425 2.32134 0.997029 172.241 -0.9882117

FPMD (scf-high) 1.17826 2.34934 0.997031 172.242 -0.9882122

semirigid 2.3137 0.997129 172.241 -0.9883117

a Subscripts denote the root-mean-square deviations of the final two or three digits of the mean. The standard errors of the mean are less
than (1 in the last digit quoted for the PIMC calculations and the MC simulations for the semirigid model, and less than (3 in the last digit
quoted for the FPMD simulations. b Specific density of 0.80 g/cm3. c Specific density of 1.88 g/cm3.

TABLE 2: Rovibrational Contributions to the Heat
Capacity in Units of R

method 325 K 673 K 1100 K 2000 K

EOSa 2.114 3.393 4.163
PIMCb (P ) 1) 5.01710 5.0299 5.0466 5.1143

PIMCb (extrapolated to P ) ∞) 2.11714 3.3956 4.1785 4.7787

classical RR/HO: linear 5.000 5.000 5.000 5.000
RR/HO: linear, fundamental 2.037 3.365 4.124 4.675
RR/HO: linear, harmonic 2.095 3.366 4.118 4.671
classical RR/HO: bent 4.500 4.500 4.500 4.500
RR/HO: bent, fundamental 2.091 3.018 3.685 4.194
RR/HO: bent, harmonic 2.094 3.022 3.681 4.191

a These values are obtained by subtracting 1.5 R and the excess
heat capacity at p ) 0.1 MPa from the corresponding EOS value.45

b The subscripts denote uncertainties given as symmetric 95%
confidence intervals in the last digit(s) for the PIMC calculations.
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Calculations for P ) 1, which yield classical anharmonic
partition functions, were also performed and need to be
calculated separately from other values of P. Calculations for
all P were performed at four temperatures: 325, 673, 1100, and
2000 K. At each temperature several (3 to 6) independent
calculations were run with 107 to 109 Monte Carlo samples to
obtain statistical uncertainties.

B. First Principles Molecular Dynamics Simulations. First
principles molecular dynamics (FPMD) simulations were per-
formed using the CP2K simulation package,31 which uses an
implementation of the Gaussian plane wave (GPW) method32

to calculate forces and energies. On the basis of the Kohn-Sham
formulation of density functional theory,33 the GPW method
uses atom-centered Gaussian basis sets to expand the Kohn-Sham
orbitals and plane wave auxiliary basis sets to expand the
electronic density. For these studies, the BLYP functional34,35

was used in conjuction with a Gaussian triple-� valence basis
set augmented with two sets of polarization functions36 and the
pseudopotentials of Goedecker, Teter, and Hutter37 with a charge
density cutoff of 280 Ry.

All FPMD simulations were performed in the canonical
ensemble. Four state points were examined: three fluid phases
at F ) 0.80 g/cm3 (low density) and T ) 325 K and F ) 1.88
g/cm3 (high density) and T ) 325 and 673 K and N ) 12
molecules, and one solid phase at 325 K and F ) 2.17 g/cm3

(N ) 32 molecules). The initial structures for the fluid phases
were taken from simulations using an empirical potential, while
the solid phase was constructed by replicating the experimental
unit cell (2 × 2 × 2). A geometry optimization was performed
on each starting structure using CP2K, followed by at least 20
ps of simulation with a time step of 1 fs. All ensemble properties
are averaged over the final 15 ps of the CP2K trajectory.
Massive Nosé-Hoover chain (NHC) thermostats (i.e., one NHC
per atom) were used to regulate the temperature.38

C. Monte Carlo Simulations Using Empirical Force
Fields. Carbon dioxide was represented as a three-site model
with the interaction sites located at the positions of the carbon
and oxygen nuclei. Intermolecular interactions were calculated
using a Lennard-Jones (LJ) potential and a Coulombic potential
with fixed partial charges. All nonbonded interaction parameters
were taken from the transferable potentials for phase equilibria
(TraPPE) force field39 that yields very satisfactory results for
the phase behavior of neat CO2,39,40 binary mixtures with either
alkanes39 or methanol,41 the negative partial molar volume of a
naphthalene solute in scCO2 near the critical point,42 and the
pressure and entrainer effects on its solubility characteristics.43

Simulations were performed for rigid linear CO2 molecules
(θ ) 180°) as well as rigid bent CO2 molecules, for which the
value of θ was taken to be 174.2°, which is the same as used
in the modified EPM model by Zhang et al.13 In addition,
simulations were performed for a semirigid CO2 molecule,
where bond distances were fixed and the bend angle, θ, was
allowed to fluctuate. For bent and semirigid CO2, all LJ and
Coulombic parameters were the same as for the linear TraPPE
model.39 For semirigid CO2, a harmonic bend potential was fit
to the potential energy surface of Chedin24 (the same Chedin
potential that was used without the harmonic approximation for
the PIMC calculations) with a fixed bond length of 1.16 Å. The
force constant and equilibrium bond angle were kθ/kB ) 56920
K/rad2 and θe ) 180°. This force constant is significantly smaller
than the value of kθ/kB ) 148660 K/rad2 used for the flexible
EPM2-M model proposed by Zhang et al.13

The semirigid TraPPE model was employed for canonical-
ensemble Monte Carlo44 simulations of the supercritical phase

(N ) 350 at T ) 325 and 673 K and densities corresponding to
a pressure of 10 MPa as provided by the Span and Wagner
equation of state (EOS)).45 Translational, rotational, and
configurational-bias46-48 Monte Carlo moves were used to
sample phase space. A spherical cutoff at half the box length
was used for LJ interactions with an analytic tail correction
applied.49 Ewald summation was used for the Coulombic
interactions.50 At least 1 × 105 MC cycles (where one MC cycle
consists of 350 MC moves) of equilibration were performed,
followed by 4 × 105 MC cycles of production. The resulting
data were split into four equal-sized blocks for analysis.

Additional canonical-ensemble Monte Carlo simulations were
carried out to compute the excess part of the constant-volume
heat capacity of rigid linear, rigid bent, and semirigid CO2 over
a wider range of state points. For each model, twelve state points
were simulated, corresponding to three temperatures (T ) 350,
700, 1100 K) at four pressures (p ) 0.1, 7.5, 10, 100 MPa).
The density of each system and the reference value of the
constant-volume heat capacity were taken from the EOS of Span
and Wagner.45

3. Results and Discussion

The distributions of the internuclear distances (rCO and rOO′)
and of their ratio (f ) rOO′/(rCO + rCO′)) obtained from FPMD
simulations of the solid and high-density supercritical phase and
from PIMC calculations of an isolated molecule are compared
in Figures 1 and 2, and the corresponding average values and
root-mean-square deviations are listed in Table 1. Except for a
small shift to larger internuclear distances by about 0.01 Å
(which is primarily due to the difference in equilibrium C-O
bond distance for an isolated molecule, namely a value of 1.173
Å for the BLYP functional and a value of 1.160 Å for the
analytical potential used in the PIMC calculations), the data for
the FPMD simulations and the PIMC calculations in the classical
limit (P ) 1) agree remarkably well for a given temperature.
That is, neither the aggregation state (solid, supercritical fluid,
and gas phase) nor the density of the supercritical fluid phase

Figure 1. Internuclear distance distributions for the CO2 molecule
at 325 (left) and 673 K (right). The distributions obtained from PIMC
calculations of an isolated molecule with P ) 256 (325 K) or 128
(673 K) and P ) 1 are shown as blue solid and red dot-dashed
lines, respectively, and those obtained from FPMD simulations of
the solid and high-density supercritical fluid phase are shown as
black short-dashed and green long-dashed lines, respectively. A bin
width of 0.005 Å is used.
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appears to have a substantial influence on the internuclear
distances. In contrast, either an increase in temperature from
325 to 673 K or the inclusion of nuclear quantum effects results
in a significant broadening of the distribution of internuclear
distances. As should be expected from the zero-point effect,
the temperature dependence is less pronounced in the quantum
mechanical limit.

All distributions for the internuclear distance ratio increase
monotonically and exhibit a maximum for a ratio of unity (see
Figure 2). This is in agreement with the data from neutron
diffraction experiments.17,18 However, since f can by definition
not exceed a value of unity, the distributions are asymmetric
and we obtain an average value of 0.9985 and a root-mean-
square deviation from the mean of 0.0015 for the calculations
that treat the nuclear motion in a fluid phase at 325 K classically
including Monte Carlo simulations for the semirigid TraPPE
model. The average value of 0.9984 for the FPMD simulation
of the solid phase is slightly smaller, but this shift is within the
uncertainties of the simulations. The f ratios obtained at 673 K
and in the quantum mechanical limit are shifted to slightly
smaller values and the root-mean-square deviations exhibit a
significant increase compared to those obtained from classical
sampling at 325 K.

The distributions of the bending angle are depicted as
functions of θ and of cos θ in Figures 3 and 4. Again, it is
immediately evident that the distributions obtained from FPMD
simulations of the solid and supercritical phase, from MC
simulations for the semirigid TraPPE model in the supercritical
phase, and from PIMC calculations for an isolated molecule in
the classical limit are in extremely good agreement, while those
obtained in the quantum mechanical limit are broader. The peak
in the linear distributions of θ is located at 175.7° for all classical
mechanical calculations at 325 K, while the value in the quantum
mechanical limit is shifted down to 174.3°. The good agreement
of the peak position of 174.2° for the 32-molecule system

average reported from CPMD simulations by Saharay and
Balasubramanian11 with the quantum mechanical value is
entirely fortuitous as should be obvious from the very different
widths of the distributions (with the distribution reported by

Figure 2. Distributions of the internuclear distance ratio, rOO′/(rCO

+ rCO), at 325 (top) and 673 K (bottom). Colors as in Figure 1. A
bin width of 0.001 is used.

Figure 3. OCO′ angle distributions at 325 (top) and 673 K (bottom).
The distributions obtained from Monte Carlo simulations of the
supercritical phase using a semirigid TraPPE model are shown as violet
dot-dot-dashed lines. Other colors as in Figure 1. A bin width of 0.5°
is used.

Figure 4. OCO′ angle distributions as a function of cos θ at 325 (top)
and 673 K (bottom). Colors as in Figure 3.
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Saharay and Balasubramanian showing a negligible probability
for θ > 175.5°).

The asymmetry of the θ distributions obtained here (with an
extended tail toward smaller θ values) results in average bending
angles that are shifted down by about one degree compared to
the peak positions (see Table 1). An increase of the temperature
to 673 K again leads to broader distributions and consequently
the peak positions and average bend angles are shifted to
somewhat smaller values.

While the linear distributions of θ show a maximum for θ *
180, the cosine distributions (see Figure 4) always show a
maximum for a value of -1, i.e., a linear conformation. This
difference is caused by the Jacobian factor, i.e., the nonuniform
angular distribution of two randomly oriented unit vectors with
the same origin that favors an angle of 90° and exhibits a
vanishing probability for an angle of 180°. Thus, the cosine
distributions indicate that CO2 most favors a linear conformation
compared to the random distribution of unit vectors, a result
that should be obvious from its intramolecular potential energy
surface that yields the linear structure as its global energy
minimum.

It is very important to stress that our simulations do not
indicate a significant difference in the cosine distributions
obtained from FPMD simulations for the solid and (low- and
high-density) supercritical phases and for the PIMC calculations
with P ) 1 for the isolated molecule. Hence, the dependence
of the distributions on the aggregate state appears to be
negligible. Saharay and Balasubramanian12 found somewhat
larger differences for CPMD simulations of scCO2 at different
densities. In particular, these authors emphasize the “contrasting
behavior between the classical and CPMD simulations” (it
should be noted here that both of these simulations follow
classical mechanical trajectories that do not account for nuclear
quantum effects). In contrast, our simulations show extremely
good agreement for the distributions obtained from FPMD
simulations and MC simulations for a semirigid empirical model
with harmonic bond bending potential. As mentioned above,
Saharay and Balasubramanian used the EPM2-M model devel-
oped by Zhang et al.13 with a harmonic force constant that is
about 2.6 times larger than the value used here, but with an
equilibrium bond angle of 180° instead of θe ) 174.2° used in
the original EPM2-M model. Given the outstanding agreement
between our MC simulations for the semirigid model and the
FPMD and PIMC (P ) 1) calculations, one must conclude that
the force constant proposed by Zhang et al. is in error.
Unfortunately, these authors do not indicate how the force
constant was obtained, whereas our force constant is based on
the accurate potential surface of Chedin.24

The θ and cos θ distributions obtained for the quantum
mechanical limit differ significantly from those without nuclear
quantum effects, but the difference is more pronounced at 325
K than at 673 K. Thus, any attempt to fit a harmonic force
constant that reproduces the quantum mechanical distribution
of bending angles would require a temperature-dependent force
constant (e.g., values of 34 000 and 24 000 K/rad2 at 325 and
673 K, respectively). The fact that Zhang et al.13 obtained better
predictions of the dielectric constant for a semirigid model as
compared to a rigid model (with an equilibrium angle of 174.2°
used in both cases) may be due to the Jacobian factor shifting
downward the average bond angle of the semirigid model closer
to the average value of 173.0° obtained here from PI calculations
in the quantum mechanical limit at 325 K.

Due to the asymmetry of the angular and f distributions, not
only the width of the distribution but also the peak position

(but, of course, not the average value) will depend on the group
size, M, for which an instantaneous average value is measured.
This is illustrated in Figures 5 and 6. The distributions for cos
θ and f obtained by considering each molecule separately (see
Figures 2 and 4) exhibit their peak for the smallest/largest
permissible value (cos θ ) -1 and f ) 1). Hence, when

Figure 5. Dependence of internuclear distance ratio (top) and the OCO′
angle (bottom) distributions at 325 K on the group size, M, used for
the observation. The distributions obtained from FPMD simulations
of high-density scCO2 for M ) 1, 2, 4, and 8, and those obtained from
PI calculations of an isolated molecule (P ) 1) with M ) 16, 32, and
64 are shown as black, green, blue, red, violet, cyan, and magenta lines,
respectively. Bin widths of 0.0001 and 0.1 are used for the internuclear
distance ratio and angle distribution plots, respectively.

Figure 6. Logarithm of the root-mean-square deviations from the mean
for the internuclear distance ratio (multiplied by 1000, blue symbols)
and the OCO′ angle (red symbols) at 325 K as a function of the
logarithm of the group size, M, used for the observation. Down triangles/
circles and up triangles/squares correspond to data from PIMC
calculations of an isolated molecule (P ) 1) and from FPMD
simulations for high-density scCO2, respectively. The dashed green line
indicates a slope of -1/2.
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distributions are computed for data reflecting the instantaneous
average value for M molecules, then the peak position shifts
away from the smallest/largest permissible value and the
distribution becomes more symmetric. This would ultimately
lead to a delta function located at the average value. For
example, the peak of the f distributions shifts from a value of
+1 for M ) 1 to 0.9988 for M ) 8 and is close to the average
value of 0.9986 for M ) 64. The relative shift in the peak
position for the θ distribution is less pronounced because the
M ) 1 distribution already peaks for θ < 180° due to the
Jacobian factor.

The dependence of the root-mean-square deviations on M for
the θ and f distributions is depicted in Figure 6. The rmsd values
found for the PIMC (P ) 1) and FPMD calculations are in
excellent agreement. In all cases, the double logarithmic plot
shows linear behavior with a slope close to -1/2, i.e., the value
expected for a normal distribution of measurements.51 Thus, a
hypothetical experiment that instantaneously observes the aver-
age over a group of M ) 32 molecules will lead to θ and f
distributions with different widths and different peak positions
than those obtained from a single-molecule experiment.

A very informative approach to elucidate whether a poly-
atomic molecule is effectively linear or nonlinear is the
measurement/calculation of the heat capacity over a wide range
of temperatures because the high-temperature limit of the heat
capacity is 0.5R for a rotational degree of freedom (including
only a kinetic energy term) whereas that for a harmonic
vibrational degree of freedom is R (including both kinetic and
potential energy contributions).21 The common approach to
compute the constant-volume heat capacity from a simulation
that follows a classical mechanical trajectory is to determine
only the excess part of the heat capacity (arising from
intermolecular interactions) from a simulation in the canonical
ensemble and to add analytical terms for the ideal gas part of
the heat capacity (including the translational kinetic energy
contribution for MC simulations).50 The former part is usually
evaluated from the fluctuations in the intermolecular energy21

(if the energy can be cleanly separated such as for pairwise
additive potentials, but care is required for polarizable force
fields52,53 or first principles simulations54) and the intramolecular
part of the latter is often estimated using the rigid rotor/harmonic
oscillator (RR/HO) approximation.21

In this work, we assume that the classical limit can be applied
for the rotational degrees of freedom and, hence, each of these
degrees of freedom contributes 0.5R to the heat capacity. On
the other hand, the quantum mechanical formula is used for
the vibrational degrees of freedom.21 This formula requires
knowledge of the vibrational frequencies of an isolated CO2

molecule. Here, we use two different sets of frequencies: (i)
673, 1354, and 2396 cm-1, the harmonic frequencies determined
from a fit to the curvature at the global energy minimum on
the potential energy surface of Chedin,24 and (ii) 667, 1388,
and 2349 cm-1, the fundamental frequencies obtained from the
experimentally observed overtones.55 To some extent, the
fundamental frequencies account for the anharmonicity of
the true vibrations and, hence, may lead to improved accuracy
compared to harmonic frequencies when used in the HO
formulas.56 Given that the linear conformer is the minimum
energy structure, it is not trivial to evaluate the harmonic
frequencies for a bent structure and we assume that the
frequencies remain the same but that one of the two degenerate
bending modes is replaced by a rotational mode when calculat-
ing the RR/HO heat capacities for the bent structure.

Figure 7 shows a comparison of the constant-volume heat
capacities of CO2 obtained for different empirical models over
a wide range of temperatures (>Tcrit) and densities. The different
models are validated against pseudoexperimental values obtained
from a very accurate EOS.45 The data show that both the rigid
linear and the semirigid models yield CV values that agree well
with the EOS, whereas use of the rigid bent model leads to CV

values that are only satisfactory at 350 K, but are significantly
too small at 700 and 1100 K. This comparison unequivocally
demonstrates that CO2 should not be viewed as a nonlinear
molecule and, hence, should not be described by a nonlinear
model. However, it can of course be represented by a flexible
model that has an equilibrium angle of 180°. Here it should
also be noted that the CV values calculated for the TraPPE force
field are in excellent agreement with the experimental data with
the exception of the two state points closest to the critical point
(T ) 350 K and p ) 7.5 or 10 MPa) where CV is slightly
underestimated. The excess CV computed for the rigid and
semirigid TraPPE models are very close for all state points,
i.e., the differences in the energetics of the neat scCO2 phase
are very small.

The numerical values of the rovibrational heat capacity
contribution, Crovib, obtained from PIMC calculations and various
approximations are summarized in Table 2. The PIMC calcula-
tions with P ) 1 yield Crovib values close to 5 R, the classical
limit for a linear triatomic molecule, at all temperatures. At 325
K, the RR/HO values for both linear and bent CO2 molecules
agree well with the PIMC calculations for the quantum
mechanical limit. The relatively small differences for the RR/
HO values for linear and bent CO2 at 325 K are due to a
fortuitous cancelation, i.e., the HO value for Cvib for the bending
mode is close to 0.5R at room temperature.21 However, the Crovib

values at 673 and 1100 K show that only the RR/HO values
for the linear structure agree with the EOS values and PIMC
calculations for the quantum mechanical limit and, hence,
demonstrate that CO2 must be viewed as a linear molecule.

Finally, a comparison to the Crovib values obtained from the
EOS demonstrates the accuracy of the PIMC calculations in

Figure 7. Constant-volume heat capacity of CO2 as a function of
temperature at four different densities corresponding to the pressures
listed in the figure. The values obtained from an EOS45 fitted to a large
experimental data set are shown as blue stars. Black circles, red squares,
and green triangles depict data obtained from Monte Carlo simulations
for a rigid linear model, a rigid nonlinear model (θ ) 174.2°), and a
semirigid model (θeq ) 180.0°), respectively, in conjunction with the
rigid rotor/harmonic oscillator approximation (using the harmonic
frequencies) to account for the contribution of vibrational and rotational
degrees of freedom.
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the quantum mechanical limit (and, hence, of the underlying
potential energy surface) that gives a mean percentage deviation
of only 0.2%. In contrast, the RR/HO approximation of the linear
molecule yields mean percentage deviations of 1.9% and 0.9%
for the fundamental and harmonic frequencies, respectively.

4. Conclusions

PIMC calculations for an isolated molecule, FPMD simula-
tions for the solid and supercritical phase, and MC simulations
for the semirigid TraPPE model in the supercritical phase allow
the following conclusions. First, CO2 most favors an arrange-
ment with the second CO bond being collinear with respect to
the first, but the Jacobian factor leads to a peak in the angular
distribution at 175.7° and a mean bend angle of 174.5° in the
classical limit at T ) 325 K. Second, the dependence of the
distributions of the internuclear distance ratio, the bend angle,
and the cosine of the bend angle on the aggregation state (solid,
supercritical, or ideal gas phase) is negligible, whereas changes
in temperature or inclusion of nuclear quantum effects signifi-
cantly alter these distributions. Third, when one considers
angular and distance ratio distributions of mean values in groups
(rather than distributions of individual values), the peak values
and the widths of the distributions depend on the group size.
Fourth, the heat capacity is accurately reproduced only by
models that use a linear equilibrium structure.
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